RELATIONS

1. Types of Relations

Empty Relation element of A is related to any other element of A, i.e.

 $R = \phi \subset A \times A$

2.

Universal Relation A relation in which each element of A is related to every element of A. i.e. R=A×A.

3.

Identity Relation A relation in which each element is related to itself only. $I = \{(a, a), a \in A\}$

4.

Reflexive Relation:

 $(a, a) \in R$, for every

Symmetric Relation: $(\alpha_{\nu} \ \alpha_{2}) \in \mathbb{R}$ implies that $(\alpha_{2\nu} \alpha_{1}) \in \mathbb{R}$, for all $\alpha_{\nu} \alpha_{2} \in \mathbb{A}$.

Transitive Relation: $(\alpha_y, \alpha_z) \in \mathbb{R} \& (\alpha_{z'}\alpha_3) \in \mathbb{R} \text{ implies}$ that $(\alpha_y, \alpha_3) \in \mathbb{R}$, for all a, a₂, a₃∈A.

Equivalence Relation: ation R in a set A is said to

be an equivalence relation it R is reflexive, symmetric &

Inverse Relation

verse relation of R from A to B, enoted by R^{-1} , is a relation from B to is defined by $R^{-1} = \{(b, \alpha) : (\alpha, b) \in R\}.$

Asymmetric Relation $(x,y) \in R \Rightarrow (y,x) \notin R$

Antisymmetric: A relation is

- For all $x, y \in X[(x, y) \in R \& (y, x) \in R] \Rightarrow x$
- For all $x, y \in X[(x, y) \in R \& x \neq y] \Rightarrow (y, x) \notin$

Irreflexive 11. $\forall a \in A, ((a,a) \notin R)$

Partial order relation

R is a partial order, if R is Reflexive, Antisymmetric and Transitive.

2. EXAMPLE:

 $A = \{1, 2, 3, 4\}$. Identify the properties of relations.

 $R_1 = \{(1,1),(2,2),(3,3),(2,1),(4,3),(4,1),(3,2)\}$

 $R_2 = A \times A, R_3 = \emptyset, R_4 = \{(1,1),(2,2),(3,3),(4,4)\}$

 $R_5 = \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(4,3),(3,4)\}$

Relation	Reflexive	Symmetric	Asymmetric	Antisymmetric	Irreflexive	Transitive
R,	×	×	×	✓	×	×
R ₂	✓	✓	×	×	×	✓
R ₃	×	✓	✓	✓	✓	✓
R ₄	✓	✓	×	✓	×	✓
R ₅	✓	✓	×	×	×	✓

NOTE

If $A = \{1,2\}$, a relation $R = \{(1,2)\}$ on A is a transitive relation. using the similar argument a relation $R = \{(x,y) : x \text{ is wife of } y\}$ is transitive, where as $R = \{(x,y) : x \text{ is father of } y\}$ is not transitive.

3. PROPERTIES

R is not reflexive does not imply R is irreflexive Counter example:

 $A = \{1, 2, 3\}, R = \{(1, 1)\}$

R is asymmetric implies that R is irreflexive. By definition, for all $a,b \in A,(a,b) \in R$ and(b,a)∉R This implies

that for all $(a,b) \in R, a \neq b$ Thus, for all $a \in A$, $(a,a) \notin R$ Therefore, R is irreflexive.

R is not symmetric does not imply R is antisymmetric. Counter example:

 $A = \{1, 2, 3\}, R =$ $\{(1,2),(2,3),(3,2)\}$

R is not symmetric does not imply R is asymmetric. Counter example:

 $A = \{1, 2, 3\}, R =$ $\{(1,2),(2,2)\}$

R is not antisymmetric does not imply R is symmetric. Counter example:

 $A = \{1, 2, 3\}, R =$ $\{(1,2),(2,3),(3,2)\}$

is reflexive implies that R is not asymmetric. By

definition, for all $a \in A, (a, a) \in R$ This implies that, both (a, b) and (b, a) are in R when a = b. Thus, R is

not asymmetric.

4. COUNTING OF RELATION

Number of relations from set A to B = 2^{mn} . where

|A|=m, |B|=n

Number of Identity relation on a set with 'n' elements = 1

Number of reflexive relation set on a set with 'n' elements = $2^{n(n-1)}$

Number of Symmetric relation set on a set with 'n' elements = $2^{n(n+1)/2}$

The number of antisymmetric binary relations possible on A is $2^n \cdot 3^{(n^2-n)/2}$

The number of binary relation on A which are both symmetic and antisymmetric is 2ⁿ.

The number of binary relation on A which are both symmetric and asymmetric is 1.

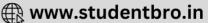
The number of binary relation which are both reflexive and antisymmetric on the set A is $3^{(n^2-n)/2}$

The number of asymmetric binary relation possible on the set A is $3^{(n^2-n)/2}$

There are at least 2ⁿ transitive relations (lower bound) and at most

 $-2^{\frac{n^2-n}{2}}+1$ (upper bound)

CLICK HERE



5. OPERATION ON RELATIONS:

1.
$$R_1 - R_2 = \{(a,b) | (a,b) \in R_1 \text{ and } (a,b) \notin R_2 \}$$

$$2.R_2 - R_1 = \{(a,b) | (a,b) \in R_2 \text{ and } (a,b) \notin R_1 \}$$

$$3.R_1 \cup R_2 = \{(a,b) | (a,b) \in R_1 \text{ or } (a,b) \in R_2\}$$

4.
$$R_1 \cap R_2 = \{(a,b) | (a,b) \in R_1 \text{ and } (a,b) \in R_2\}$$

PROPERTIES

- 1) If R_1 and R_2 are reflexive, and symmetric, then $R_1 \cup R_2$ is reflexive, and symmetric.
- 2) If R_1 is transitive and R_2 is transitive, then $R_1 \cup R_2$ need not be transitive.

counter example: Let $A = \{1,2\}$ such that $R_1 = \{(1,2)\}$ and

$$R_{_2} = \big\{ \big(2,\!1\big) \big\}. \\ R_{_1} \cup R_{_2} = \big\{ \big(1,\!2\big),\! \big(2,\!1\big) \big\} \text{ and } \big(1,\!1\big) \not \in R_{_1} \cup R_{_2} \text{ implies that }$$

 $R_1 \cup R_2$ is not transitive.

- 3) If $R_{_1}$ and $R_{_2}$ are equivalence relations, then $R_{_1} \cap R_{_2}$ is an equivalence relation.
- 4) If R, and R, are equivalence relations on A,
- $R_1 R_2$ is not an equivalence relation (reflexivity fails).
- $R_1 R_2$ is not a partial order (since $R_1 R_2$ is not reflexive).
- R₁ ⊕ R₂ = R₁ ∪ R₂ − (R₁ ∩ R₂) is neither equivalence relation nor partial order (reflexivity fails)
- 5) The union of two equivalence relation on a set is not necessarily an equivalence reation on the set.
- 6) The inverse of a equivalence relation R is an equivalence relation.

6. COMPOSITON OF RELATIONS

Let $R_1 \subseteq A \times B$ and $R_2 \subseteq B \times C$, Composition of R_2 on

 R_1 , denoted as R_1 R_2 or simply R_1R_2 is

$$R_1 \quad R_2 = \{(a,c) \mid a \in A, c \in C \land \exists b \in B \text{ such that}$$

$$((a,b) \in R_1, (b,c) \in R_2)\}$$

NOTE

$$R_1 (R_2 \cap R_3) \subset R_1 R_2 \cap R_1 R_3$$

$$R_1 (R_2 \cup R_3) = R_1 R_2 \cup R_1 R_3$$

$$R_1 \subseteq A \times B, R_2 \subseteq B \times C, R_3 \subseteq C \times D.(R_1R_2)R_3 = R_1(R_2R_3)$$

$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$

7. EQUIVALENCE CLASS

Equivalence class of $a \in A$ is defined as $[a] = \{x \mid (x,a) \in R\}$, that is all the elements related to a under the relation R.

Example

E=Even integers, O=odd integers.

- (i) All elements of E are related to each other and all elements of O are related to each other.
- (ii) No element of E is related to any element of O and vice-versa.
- (iii) E and O are disjoint and $\mathbf{Z} = \mathbf{E} \cup \mathbf{O}$

The subset E is called the equivalence class containing zero and is denoted by [0].

Properties: consider an equivalence relation R defiend on a set A.

$$\mathbf{1.} \bigcup_{\forall a \in \Delta} [a] = A$$

2. For every $a,b \in A$ such that $a \in [b], a \neq b$ it follows that [a] = [b]

$$3. \sum_{\forall x \in A} |[x]| = |R|$$

4. For any two equivalence class[a] and [b], either [a] = [b] or [a] \cap [b] = ϕ

5. For all $a, b \in A$, if $a \in [b]$ then $b \in [a]$

6. For all $a, b, c \in A$, if $a \in [b]$ and $b \in [c]$, then $a \in [c]$

7. For all $a \in A$, $[a] \neq \phi$

Congruence modulo n given by $a \equiv b \pmod{n}$ if and only if n divides (a - b).

8. BINARY OPERATIONS

Let S be a non-empty set. A function $f: S \times S \rightarrow S$ is called a binary opertion on set S.

Note

Number of binary operations on a set containing n elements is $\operatorname{\boldsymbol{n}}^{\operatorname{n}^{\circ}}$

